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We are concerned with an integral method applied to the solution of the Helmholtz
equation where the linear system is solved using an iterative method. We need to
perform matrix–vector products whose time and memory requirements increase as
a function of the wavenumber �. Many methods have been developed to speed up
the matrix–vector product calculation or to reduce the size of the system. Microlo-
cal discretization methods enable one to consider new systems with reduced size.
Another method, the fast multipole method, is one of the most efficient and robust
methods used to speed up the calculation of matrix–vector products. In this paper,
a coupling of these two recently developed methods is presented. This coupling
enables one to reduce CPU time very efficiently for large wavenumbers. Satisfac-
tory numerical tests are also presented to confirm the theoretical study within a new
integral formulation. Results are obtained for a sphere with a size of 26� using a
resolution based on a mesh with an average edge length of about 2�, where � is the
wavelength. Results are also given for an industrial test case from Dassault–Aviation,
the Cetaf. c© 2002 Elsevier Science (USA)

Key Words: Helmholtz; integral equation; finite element; fast multipole method;
microlocal discretization.

1. INTRODUCTION

A numerical solution to the boundary integral equation for the exterior Helmholtz
problem in three dimensions leads to the solution of a dense linear system. In order
to have a well-conditioned system, we consider new integral equations written by B.
Després. Després and co-workers [16, 32; see also 5, 31] wrote new integral equations
with properties that enable one to use an iterative solution based on the conjugate gradient.
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In order to accelerate the iterative solution of the system, we have considered a cou-
pling of two methods, the microlocal discretization method and the fast multipole method
(FMM).

Under particular conditions, the microlocal discretization method, according to Abboud
et al. [1, 2] consists of approximating the phase of the unknown using the geometrical optics
method. Consequently, the oscillation of the new unknown is reduced. We can then consider
a numerical approximation with a number of degrees of freedom Nd clearly less, according
to the wavenumber �. Indeed, in the classical case we have Nd ∼ �2, while Nd ∼ �2/3 after
approximation of the phase. Nevertheless, the discretization of the geometry implies a
consideration of O(N ) elements, with N ∼ �2, on the surface of the obstacle. Then, the
calculation of the matrix of the system also needs O(N 2) operations with N ∼ �2, as in
the classical case. Thus, the authors of the method suggested the use of the theory of the
stationary phase in order to accelerate the calculation of the matrix [2, 19]. However, this
theory does not enable one to have a good estimate of the CPU time needed for good accuracy,
and the extension to the 3-D case implies difficulties not yet solved. de la Bourdonnaye has
given another version of the microlocal discretization method [14, 15], which also makes
use of the stationary-phase theory.

The FMM is based on another idea. The issue is to factorize the product A · Y and to
cluster advisedly the terms in order to reduce both resolution time and memory requirement.
From the geometrical point of view, the calculus of far interactions is greatly speeded
up by clustering the elements of the mesh properly. The one-level FMM (respectively
multilevel FMM) results in an algorithm of complexity O(N 3/2) (respectively O(N ln2 N )),
where N ∼ �2. This method introduced for the Laplace equation by Greengard and Rokhlin
[17, 18] was extended for the Helmholtz and Maxwell equations by Rokhlin [26, 27], Chew
and co-workers [7, 20, 28–30, 34], Darve [11–13], and other [8, 25].

The object of this paper is to describe a coupling of the microlocal discretization method
according to Abboud et al. and the one-level FMM. The ideas of this work have briefly been
presented at conferences [9, 10]. Using the approximation of the phase of the unknown, the
microlocal discretization method enables one to consider a numerical approximation with
a number of degrees of freedom O(�2/3) instead of O(�2), as in the classical case. The size
of the system is then O(�2/3 × �2/3). Nevertheless, due to geometrical approximations, the
matrix calculation still requires O(�2 × �2) operations. In this paper we suggest using the
one-level FMM in order to speed up the matrix calculation instead of the use of the theory
of the stationary phase. This is a different use of the FMM since in our method the matrix of
the system is calculated once and stored, and the FMM is used to accelerate its calculation.
Thus, the matrix calculation is performed due to an algorithm with complexity �3 instead of
�4. We also did a theoretical study of the use of a multilevel FMM. This should enable one
to obtain a matrix calculation with complexity �8/3. This idea will be the topic of another
paper.

First, we present the new integral equations and the classical solution of this system.
Next, we present the microlocal discretization method and the FMM in order to give a
comprehensive theoretical study of our coupling of the methods. Finally, numerical tests
are considered to confirm the theoretical study. The scattering of the unit sphere is studied
for large frequencies (up to a size of 26� and an area of 2100�2 for the sphere, with a
coarse mesh whose average edge length is 2�, where � is the wavelength), and an indus-
trial test case from Dassault–Aviation, called the CETAF and presented by Darve [13], is
considered.
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General notations are as follows:

ı
√−1

� wavelength
� wavenumber � = 2�/�

jm spherical Bessel function
ym spherical Neumann function
h(1)

m spherical Hankel function of the first kind, h(1)
m = jm + ıym

Pm Legendre polynomial
S2 unit sphere S2 = {ŝ ∈ R

3/|ŝ| = 1}

2. NEW INTEGRAL EQUATIONS FOR THE 3-D HELMHOLTZ PROBLEM

2.1. Formulation of the New Integral Equations

Després wrote a new system of integral equations for the 3-D Maxwell equation and
the 2-D Helmholtz equation. This system derives from the minimization of a quadratic
functional. Classical systems do not have good matrix properties and are not suitable for an
efficient iterative resolution. On the other hand, the considered IE (new integral equations,
according to Després) lead to a new system whose matrix properties enable one to use
an efficient iterative resolution based on the conjugate gradient without the use of precon-
ditioning. Thus, in this paper, we study the coupling of the microlocal discretization and
the fast multipole method for the solution of this IE system. However, this coupling could
be considered in the same way for more classical integral systems. Bartoli and Collino
rewrote the IE for the 2-D Helmholtz equation in a more comprehensible way (see [5]). In
this section, we establish the IE for the 3-D Helmholtz equation in a way similar to that of
N. Bartoli and F. Collino.

We first consider the Helmholtz equation with the particular impedance boundary con-
dition 

�u + �2u = 0 in �+,
∂u
∂n /� + ı�u/� = g on �,

lim
r→+∞ r

(
∂u
∂r − ı�u

) = 0,

(1)

where �− is a regular bounded domain of R
3, of boundary �, and �+ = R

3\�− (Fig. 1). g is
given as a function of the incident wave. The unit normal n is directed to the exterior domain.

A first equation is obtained, considering that the solution of{
�u + �2u = 0 in �+

lim
r→+∞ r

(
∂u
∂r − ı�u

) = 0

Ω

Γ

n
Ω

-

+

FIG. 1. The obstacle.
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is given by

�u = M
(
�u/�

) − L

(
∂u

∂n
/�

)
in �+. (2)

L and M are the single- and double-layer potential defined for all x not in � by

Lp(x) = �

∫
�

G(x, y)p(y) d� (y) and M�(x) =
∫

�

∂G

∂ny
(x, y)�(y) d� (y),

with G(x, y) = eı�|x−y|
4�|x − y| .

With the notations q = �u/� and p = ∂u
∂n /� , we have the relations

[
D −K ′ − I

2

−K + I
2 S

] [
q
p

]
=

[
0
0

]
, (3)

where the operators S, K , K ′, and D are defined for all x in � by

Sp(x) = �

∫
�

G(x, y) p(y) d� (y), Dq(x) = 1

�

∫
�

∂2G

∂nx∂ny
(x, y) q(y) d� (y),

K q(x) =
∫

�

∂G

∂ny
(x, y) q(y) d� (y), K ′ p(x) =

∫
�

∂G

∂nx
(x, y) p(y) d� (y).

The singularity of D will be treated by the formula

〈Dq, q ′〉L2(�) = 1

�

∫
�

∫
�

G(x, y)[�2q(y) q ′(x)(nx · ny)

− −→
curl�q(y) · −→

curl�q ′(x)] d� (y) d� (x).

Considering the kernel expression, two other relations can be derived from the system (3).
The kernel G(x, y) can be split into real and imaginery parts

G(x, y) = Gr (x, y) + ıGi (x, y), with

 Gr (x, y) = cos(�|x − y|)
4�|x − y| ,

Gi (x, y) = sin(�|x − y|)
4�|x − y| .

(4)

Following this decomposition, the operators read

S = Sr + ı Si , K = Kr + ı Ki , K ′ = K ′
r + ı K ′

i , D = Dr + ı Di ,

where Sr , Kr , K ′
r , Dr , Si , Ki , K ′

i , and Di are real operators.
We now introduce a new couple of unknowns on the boundary, � = ıq and � = ıp. Thus,

system (3) becomes

K
[

q
p

]
+ M

[
�

�

]
=

[
0
0

]
, (5)
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where

K =
[

Dr −K ′
r − I

2

−Kr + I
2 Sr

]
and M =

[
Di −K ′

i

−Ki Si

]
,

which implies, multiplying by ı ,

K
[

�

�

]
= M

[
q
p

]
. (6)

Sr and Dr are symmetrical, and K is related to its adjoint K∗ through the relation

K − K∗ =
[

0 −I
I 0

]
= 	. (7)

Up to now, the boundary condition has not been used. It implies the two equivalent relations

p + � = g,

−� + q = −ıg.

Letting g̃ = [ −ıg
g ], we obtain

[
q
p

]
+ 	

[
�

�

]
= g̃. (8)

Hence, considering relations (6)–(8), we obtain the system

[
q
p

]
+ M

[
q
p

]
− K∗

[
�

�

]
= g̃. (9)

We now proceed to the derivation of the matrix M from the far field operator in order to
deduce some of its properties. Let us consider the operator defined for all p, q in L2(�) and
ŝ in S2: (

A∞

[
q
p

])
(ŝ) = �

4�

∫
�

e−ı�y·ŝ · (p(y) + ı(ŝ · ny)q(y)) d� (y). (10)

Its adjoint is given for all � in L2(S2) by

(A∗
∞�)(y) =

[ −�
4�

∫
S2 ı(ŝ · ny)eı�y·ŝ�(ŝ) dŝ

�
4�

∫
S2 eı�y·ŝ�(ŝ) dŝ

]
, (11)

where
∫

S2 · dŝ denotes the integral around the unit sphere S2. Next, using the relation

sin(�|x − y|)
4�|x − y| = �

(4�)2

∫
S2

eı�(x−y)·ŝ dŝ,
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we can easily check that

M = A∗
∞ A∞; (12)

i.e., for all p, q ∈ L2(�),

∫
S2

A∞

[
q
p

]
. A∞

[
q̃

p̃

]
dŝ =

∫
�

(
M

[
q
p

])
·
[

q̃

p̃

]
d�. (13)

Considering relations (5) and (9), we obtain the system{
X + A∗

∞ A∞ X − K∗Y = g̃,

KX + A∗
∞ A∞Y = 0,

(14)

where X = [ q
p

] and Y = ı X = [ �
�

]. The theory of the inf–sup condition enables one to
check the existence and the unicity of X and the existence of Y . In order to gain the unicity
of Y , B, Després suggested the modification (see [5]) of adding

�X = −ı�Y to the first equation

and �Y = ı�X to the second one,
(15)

given that � is a strictly positive parameter. We then obtain the �-system{
(I d + �)X + A∗

∞ A∞ X − K∗Y = g̃ − ı�Y,

KX + (� + A∗
∞ A∞)Y = ı�X.

(16)

Hence, with the coercivity condition satisfied, the �-system has a unique solution (X, Y ),
and this solution satisfies

Y = ı X. (17)

Now, consider a general impedance condition, the Robin condition

∂u

∂n
/� + ı�Zu/� = f on �,

where the impedance operator Z has a positive real part. The Dirichlet condition can be
considered when Z → +∞. Let R be the associated reflection operator

R = I d − Z

I d + Z
.

This condition is written in the form

∂u

∂n
/� + ı�u/� = g on �,

with g expressed as

g = R

(
−∂u

∂n
/� + ı�u/�

)
+ (1 + R) f.
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Thus, we can still have system (16) with

g̃ =
[−ıg

g

]
=

[−ı R(−p + ıq)

R(−p + ıq)

]
+

[−ı(1 + R) f

(1 + R) f

]
.

Let F =[−ı(1 + R) f
(1 + R) f ] and NR = R [1 ı

ı −1 ]. System (16) is written{
(I d + �)X + A∗

∞ A∞ X − K∗Y = NR X + F − ı�Y,

KX + (� + A∗
∞ A∞)Y = ı�X ;

(18)

i.e.,

M�

[
X
Y

]
= RR,�

[
X
Y

]
+

[
F
0

]
, (19)

where

M� =
[

(I d + �) + A∗
∞ A∞ −K∗

K � + A∗
∞ A∞

]
and RR,� =

[
NR −ı� I d

ı� I d 0

]
. (20)

Due to the condition |R| ≤ 1, the inf–sup condition is also satisfied, ensuring existence and
unicity of the solution.

We now consider a finite element discretization of system (18). Let �h be an approxima-
tion of the surface �, obtained by a triangulation Th . Let Vh = Vect{�i ; i = 1, N }, with �i ,
i ∈ {1, . . . , N } the P1-basis functions associated with Th , and with N the number of nodes
of the finite element mesh �h , N ∼ �2,

�i ∈ P1, and �i (Nod j ) = 	i j ,

where Nod j denotes the j th node of the finite element mesh. Let 
 i = [ �i

0
] and 
 i+N = [ 0

�i
]

for all i in {1, . . . , N }. After using the variational formulation, we obtain the discrete system

M�

[ Xh

Yh

]
= RR,�

[ Xh

Yh

]
+

[ Fh

0

]
, (21)

where M� and RR,� are given by

M� =
[D� + A −K∗

K B� + A

]
and RR,� =

[ NR −ıB�

ıB� 0

]
, (22)

with B�, D�, K, K∗, A, and NR the matrices 2N × 2N and Fh the vector of size 2N defined
by

(Fh) j = 〈F, 
 j 〉Vh , (B�) j i = 〈�
 i , 
 j 〉Vh ,

(D�) j i = 〈(1 + �)
 i , 
 j 〉Vh , (NR) j i = 〈NR
 i , 
 j 〉Vh ,

(K) j i = 〈K
 i , 
 j 〉Vh , (K∗) j i = 〈K∗
 i , 
 j 〉Vh ,

(A) j i = 〈A∞
 i , A∞
 j 〉L2(S2), or (A) j i = 〈M
 i , 
 j 〉Vh ,

(23)
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where Vh = Vh × Vh . The discrete inf–sup condition also confirms the existence and unicity
of the solution. The finite element structure ensures that the discrete solution converges with
the solution to the continuous system (19).

2.2. Solution of the Linear System

In order to solve system (21), we suggest using the relaxed Jacobi method according to the
following definition. Let � be the relaxation parameter. Let [

X (0)
h

Y (0)
h

] be such that Y (0)
h = ı X (0)

h .
We define ([

X (n)
h

Y (n)
h

])
n≥1

according to the relation[
X (n)

h

Y (n)
h

]
= �

[
X̃ (n)

h

Ỹ (n)
h

]
+ (1 − �)

[
X (n−1)

h

Y (n−1)
h

]
,

where [
X̃ (n)

h

Ỹ (n)
h

] is the solution to

[
D� + A −K∗

K B� + A

][
X̃ (n)

h

Ỹ (n)
h

]
=

[
NR −ıB�

ıB� 0

][
X (n−1)

h

Y (n−1)
h

]
+

[
Fh

0

]
. (24)

Let [
V
W

]
=

[
NR −ıB�

ıB� 0

][
X (n−1)

h

Y (n−1)
h

]
+

[
Fh

0

]
.

The nth iteration of the solution boils down to the solution of the following system for [ X
Y ]:{

(D� + A)X − K∗Y = V,

KX + (B� + A)Y = W.
(25)

That is, {
X = (D� + A)−1(V + K∗Y ),

K(D� + A)−1V + K(D� + A)−1K∗Y + (B� + A)Y = W.
(26)

Thus, the point is to solve the following equation for Y :

(K(D� + A)−1K∗ + B� + A)Y = W − K(D� + A)−1V . (27)

This solution is based on the use of the conjugate gradient method:

1. Calculation of Z = W − K(D� + A)−1V
(i) Solution of (D� + A)Z̃ = V according to the conjugate gradient method with the

matrix (D� + A).
(ii) Z = W − K Z̃ .
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2. Solution of (K(D� + A)−1K∗ + B� + A)Y = Z using a conjugate gradient method
with the matrix (K(D� + A)−1K∗ + B� + A). In this way, we have to perform products of
the form (D� + A)−1 X̃ , where X̃ is a given vector. This kind of product is described in 1(i).

As far as the convergence of the conjugate gradient method is concerned, we can easily
check that the matrices (D� + A) and (K(D� + A)−1K∗ + B� + A) are Hermitian positive
definite. The convergence of the relaxed Jacobi method is ensured on the assumption that
|R| < 1. Due to the integral operators K, K∗, and A∞, the calculation of the matrices K,
K∗, and A implies the calculus cost O(N 2). Regarding K and K∗, the calculation consists
in performing the following expressions, ∀i, j ∈ {1, . . . , N }:

1. 〈Sr �i , � j 〉Vh = �

∫
�h

∫
�h

Gr (x, y)�i (y) � j (x) d� (y) d� (x),

2. 〈Kr �i , � j 〉Vh =
∫

�h

∫
�h

∂Gr

∂ny
(x, y) �i (y)� j (x) d� (y) d� (x),

3. 〈K ′
r �i , � j 〉Vh =

∫
�h

∫
�h

∂Gr

∂nx
(x, y)�i (y) � j (x) d� (y) d� (x),

4. 〈Dr �i , � j 〉Vh = 1

�

∫
�h

∫
�h

∂2Gr

∂nx∂ny
(x, y)�i (y)� j (x) d� (y) d� (x).

(28)

The Fourth term is performed according to the formula [24]

〈Dr �i , � j 〉Vh = 1

�

∫
�h

∫
�h

Gr (x, y)[ �2�i (y) � j (x) (nx · ny)

− −→
curl�h �i (y) · −→

curl�h � j (x)] d� (y) d� (x).

Singularities for x = y are treated according to a change of variables in the close inter-
actions. As regards A, the calculation is performed using the relation (A) j i = 〈A∞
 i ,

A∞
 j 〉L2(S2). For the Robin case with R = 0, we can consider another �-system, whose
solution is based on the biconjugate gradient without the relaxed Jacobi method, adding the
following equations instead of (15):

−�X − ı�Y = 0,
(29)

and − ı�X + �Y = 0.

Such a solution needs O(N 2) operations due to the matrix–vector products with the
matrices K, K∗, and A. The next sections deal with speeding up the solution of system (21).

3. REDUCTION OF THE SIZE OF THE SYSTEM: MICROLOCAL DISCRETIZATION

In this section, we give a short presentation of the microlocal discretization method
introduced by Zhou and co-workers [1, 2, 35], assuming the following conditions are met.

• � is a bounded open convex domain in R
3.

• uinc is an incident plane wave.
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Let q = u/� be the potential on the boundary �. Let �h be a piecewise l-degree polynomial
boundary. We denote by �h the orthogonal projection from �h to �, which is a bijection if
h is small enough, where h denotes the greatest diameter of the elements of �h . Consider
qh the unknown of the Pm finite element discrete problem based on �h . We then obtain the
estimates

‖q − �h(qh)‖H s (�)

‖q‖H s (�)
≤ C(h�)m+1, (30)

where s = 0 in the Dirichlet case and s = 1/2 in the Neumann case. These estimates in-
volve the choice h ∼ �−1. The method considered in this section permits new estimates to
be obtained using an approximation of the phase function of the unknown. It stems from
the coupling of finite element methods and asymptotic methods. It involves concepts of
asymptotic expansions of the amplitude and the phase functions introduced by the geomet-
rical theory of diffraction and the uniformed theory of diffraction based on ray methods
(see, e.g., Bouche and Molinet [6]). The unknown writes q = Qeı� , where Q is the ampli-
tude and � the phase function. An asymptotic behavior of the phase function is given by
� = ��0 + O(�1/3) [4, 21, 33]. An approximation of the phase function at the first degree
is then given by �̃ = ��0. When the obstacle is convex and the incident wave is plane, i.e.,
uinc(x) = eı� ·x , �0 is defined by �0(x) =  · x . Denoting by q̃ the new unknown such that
q = q̃eı��0 , q̃ = Qeı(�−�̃), new error estimates are

‖ q̃ − �h(q̃h)‖L2(�)

‖ q̃ ‖L2(�)
≤ C

[
hm + hl + (

h�1/3
)m+1 + �hl

]
in the Dirichlet case, and

‖ q̃ − �h(q̃h)‖H 1/2(�)

‖ q̃ ‖H 1/2(�)
≤ C

[(
h�1/3

)m+1 + �3/2hl(�h + 1)
]

(31)

in the Neumann and Robin cases.
The error associated with the boundary approximation consists of the hl terms. On the

other hand, the hm terms come from the finite element discretization. Thus, thanks to
the term h�1/3, a new mesh can be considered with h ∼ �−1/3, but due to the terms �hl

and �3/2hl(�h + 1), we should consider a boundary approximation of degree l ≥ 3 in the
Dirichlet case and l ≥ 7 in the Neumann and Robin cases. Such consideration is very
difficult to achieve numerically. Thus, Zhou and co-workers proposed a new Pm finite
element method based on a coarse mesh �c to define the unknown and a fine mesh � f to
approximate the boundary �. hc and h f denote, respectively, the greatest diameter of the
elements of �c and � f . The unknown is defined on �c and the integrals are performed on
the fine mesh � f . New error estimates are given by the formulas

‖ q̃ − �h(q̃h)‖L2(�)

‖ q̃ ‖L2(�)
≤ C

[
hm

c + h−1
c hl+1

f + (
hc�1/3

)m+1 + �h−1
c hl+1

f

]
in the Dirichlet case, and

‖ q̃ − �h(q̃h)‖H 1/2(�)

‖ q̃ ‖H 1/2(�)
≤ C

[
�1/2hm+1/2

c + �1/2hl+1
f + (

hc�1/3
)m+1

+ (
hl

f h−1
c �1/2 + �3/2hl

f

)
(�h f + 1)

]
(32)

in the Neumann and Robin cases .
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elements of Γ−π
f

elements

one element T s Γc
s

Tkk fΓo of

k

Γc

of

ofkTone element

π

FIG. 2. Coarse mesh and fine mesh.

�c is associated with the discretization of the unknown with the hm
c terms. The hl

f terms
confirm the contribution of � f to the boundary discretization. These new error estimates
imply the following choices:

hc ∼ �−1/3, h f ∼ �−1. (33)

In the Dirichlet case, we merely need a geometric approximation with l = 1. In the case of
both Neumann and Robin, l ≥ 3/2 (then l ≥ 2) is a theoretically necessary condition, but
the numerical tests show that the case l = 1 is quite relevant.

Now, we have to introduce notations about the meshes. The unknown is defined from the
coarse mesh �c, with a number of nodes Nc = O(�2/3). � f denotes the fine mesh used to
approach the surface of the obstacle, with a number of nodes N f = O(�2). Actually, � f

will be obtained from �c as follows. We first consider �c a given mesh. Let �−�
f be the

plane refinement of �c. Then, � f is obtained from �−�
f by projection onto the surface �

of the obstacle. Due to these considerations, we subsequently denote as � the orthogonal
projection from the plane triangles of �c to the ones of � f . � is such that � f = �(�−�

f ).
We also define �s

c as the projection of �c on � f by �. The elements of �s
c follow the surface

as � f does but are not plane elements (see Fig. 2).
In our case, we consider a new P1 finite element discretization based on �s

c . The new
discrete space is then defined by

Ṽ h
(
�s

c

) = {
q̃h/q̃h = q̃ ◦ �−1, q̃|Tj ∈ P1(Tj )

}
,

where (Tj ) j describes the elements of �c. To simplify the notations, the subscript h
denotes hc.

Let 
 i = [ �i

0 ] and 
 (i+Nc) = [ 0
�i ] for all i in {1, . . . , Nc}, where �i , i ∈ 1, . . . , Nc, is the

basis function associated with the i th node of the mesh�c. Let Ṽh = Ṽ h × Ṽ h . The unknown
is then given by qh = q̃heı��0 = ∑2Nc

i=1 q̃i 
̃ i , and (q̃i )i=1,..,2Nc is the new discrete unknown,
with 
̃ i = (
 i ◦ �−1)eı��0 . 
 i is defined on �c and evaluated only for points from the
plane triangles of �c, but the functions 
̃ i and �0 are evaluated for quadrature points of the
mesh �s

c .
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Hence, in our case defined in the previous section, the new system has the size O(Nc ×
Nc). Using 
̃ i like test functions, it can be written like (21),[

D� + A −K∗

K B� + A

][
Xh

Yh

]
=

[
NR −ıB�

ıB� 0

][
Xh

Yh

]
+

[
Fh

0

]
, (34)

with the new definitions

(Fh) j = 〈F, 
̃ j 〉Ṽh
= 〈F, (
 j ◦ �−1)eı��0〉Ṽh

,
(35)

(B�) j i = 〈�
̃ i , 
̃ j 〉Ṽh
= 〈�(
 i ◦ �−1)eı��0 , (
 j ◦ �−1)eı��0〉Ṽh

,

and defined in the same way:

(D�) j i = 〈(1 + �)
̃ i , 
̃ j 〉Ṽh
, (NR) j i = 〈NR
̃ i , 
̃ j 〉Ṽh

,

(K) j i = 〈K
̃ i , 
̃ j 〉Ṽh
, (K∗) j i = 〈K∗
̃ i , 
̃ j 〉Ṽh

, (36)

(A) j i = 〈A∞
̃ i , A∞
̃ j 〉L2(S2).

For example, the duality 〈Sr �i , � j 〉Vh (28) becomes

〈Sr �̃i , �̃ j 〉Ṽh
= �

∫
�s

c

∫
�s

c

Gr (x, y)�̃i (y)�̃ j (x) d� (y) d� (x)

= �

∫
� f

∫
� f

Gr (x, y)�̃i (y)�̃ j (x) d� (y) d� (x)

= �
∑

k/T s
k ∩ supp(�i )�=�

∑
k0

∑
l/T s

l ∩ supp(� j )�=�

∑
l0

∫
Tkk0

∫
Tll0

Gr (x, y)

× �i (�
−1(y))eı��0(y) � j (�−1(x))eı��0(x) d� (y) d� (x), (37)

where we denote by {Tkk0}k0 the set of triangles of � f that make up T s
k (see Fig. 2).

The new system (34) has the same properties as the previous one (21) due to the particular
choice of the test functions. Thus, we select the same resolution, given in Section 2.2.

Hence, we obtain a problem whose size is O(�4/3) instead of O(�4). Thus, the memory
cost is much less, but due to the performing of the matrices with respect to the consideration
of the fine mesh � f , the matrices calculation still requires O(�4) operations. To reduce the
cost, the authors Zhou and co-workers suggested using the theory of the stationary phase
[19]. However, the numerical approach of this theory is very complicated and implies
difficulties not yet solved in 3-D. In the next section we present a study of the FMM in
order to speed up the calculation of the matrices (see Section 5) without the theory of the
stationary phase.

4. ACCELERATION OF THE CALCULATION: THE ONE-LEVEL

FAST MULTIPOLE METHOD

The fast multipole method is a robust method that speeds up the calculation of the matrix–
vector products of the iterative solution. We briefly present the one-level fast multipole
method. For further information, we refer the reader to recent articles written by Darve
[11–13] for the multilevel FMM and to previous articles [8, 28].
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FIG. 3. Interaction between x1 and x2.

The method is based on two developments. Through groups of elements, an uncoupling
between two points is established using the Gegenbauer series and an integral around the
unit sphere S2. The obstacle is included inside a cube. Subdividing recursively the cube
as an oct-tree, we obtain the groups of elements considering the boxes of the finest level.
Let x1, x2 ∈ �h . Let O1, O2 be the centers of the two boxes C1 and C2, including x1 and
x2 (Fig. 3). Then, x1 − x2 = r0 + r , where r0 = O1 − O2, r = r1 − r2, and ri = xi − Oi .
With |r0| > |r | the expansion of the Green function used by the multipole method is given
by the formula (see [3])

eı�|x1−x2|

4�|x1 − x2| ≈ ı�

(4�)2

P∑
p=1

�peı�〈sp,r1〉TL ,r0 (sp)e−ı�〈sp,r2〉, (38)

with

TL ,r0 (s) =
L∑

m=0

(2m + 1)ımh(1)
m (�|r0|)Pm(cos(s, r0)).

The integer L is the truncation parameter of the Gegenbauer series and P the number of
discrete directions {sp, p = 1, . . . , P} corresponding to a numerical quadrature on the unit
sphere S2. The quadrature generally considered consists of a trapezoidal quadrature in the
� direction and a Gauss–Legendre quadrature in the cos � direction, where (� , �, �) is
the spherical coordinate system [12, 20, 25]. Recent studies of Chew and co-workers [20]
validate, for relatively large values of �d, the empirical formula

L = �d + C(�d)1/3, (39)

where d is the diameter of the multipole boxes and C depends only on the desired accuracy.
Next, P is given as

P = (L + 1)(2L + 1). (40)

We suggest the application of the one-level FMM to speed up the matrix–vector products
whose matrix is, respectively, K, K∗, and A, defined for the IE system in Section 2. New
integral kernels and developments are considered here (see [22]). For the singular integral
kernel of the IE system, where the matrix is K or K∗ (see [3, p. 440]), we have the multipole
approximation

cos(�|x1 − x2|)
4�|x1 − x2| ≈ −�

(4�)2

P∑
p=1

�peı�〈sp,r1〉T �
L ,r0

(sp)e−ı�〈sp,r2〉,

(41)

with T �
L ,r0

(s) =
L∑

m=0

(2m + 1)ım ym(�|r0|)Pm(cos(s, r0)).
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The normal derivative of the integral kernel has the following approximation, where j = 1, 2:

∂n j

cos(�|x1 − x2|)
4�|x1 − x2| ≈ (−1) j ı�2

(4�)2

P∑
p=1

�p〈sp, n(x j )〉eı�〈sp,r1〉T �
L ,r0

(sp)e−ı�〈sp,r2〉. (42)

After derivation, P must be slightly greater than it was, as Rahola showed [25]. As well as for
the classical case, the previous approximations are available for far interactions (condition
|r0| > |r |).

We now study the case of the matrix A, with the regular integral kernel of the IE system.
We then consider the relation (A) j i = 〈M
 i , 
 j 〉Vh . Due to the regularity of the integral
kernel, the approximation can be written for all x1, x2. Thus, the far and close interactions
are approximated in the same way,

sin(�|x1 − x2|)
4�|x1 − x2| ≈ �

(4�)2

P∑
p=1

�peı�〈sp,r1〉T �
L ,r0

(sp)e−ı�〈sp,r2〉

(43)

with T �
L ,r0

(s) =
L∑

m=0

(2m + 1)ım jm(�|r0|)Pm(cos(s, r0)).

The normal derivative of the integral kernel has the following approximation, for j = 1, 2:

∂n j

sin(�|x1 − x2|)
4�|x1 − x2| ≈ (−1) j+1ı�2

(4�)2

P∑
p=1

�p〈sp, n(x j )〉eı�〈sp,r1〉T �
L ,r0

(sp)e−ı�〈sp,r2〉, (44)

∂n1∂n2

sin(�|x1 − x2|)
4�|x1 − x2| ≈ �3

(4�)2

P∑
p=1

�p〈sp, n(x1)〉〈sp, n(x2)〉eı�〈sp,r1〉T �
L ,r0

(sp)e−ı�〈sp,r2〉.

(45)

We give, for example, the algorithm of the fast product M Y for a given vector Y and with
the matrix M defined by

∀i, j ∈ {1, . . . , N }, Mi j = �i� j Gr (xi , x j ), �i ,� j ∈ C.

The matrix stands for a discretization of (28.1). We apply the one-level FMM using relation
(41). Let Nfmm be the number of FMM boxes. Due to the condition |r0| > |r |, we consider
the close part and the far part of the matrix, for xi in a FMM box C and x j in a FMM
box C̃ ,

(Mfar)i j =
{

0 if C̃ close to C,

Mi j if C̃ far from C,
(Mclose)i j =

{
Mi j if C̃ close to C,

0 if C̃ far from C,
(46)

where “C̃ close to C” means that the cubes C̃ and C have at least one common vertex. The
multipole approximation is given by the following relation, for all i in {1, . . . , N }, xi in a
box C :

(Mfar Y )i ≈ �i ≡ −�

(4�)2
�i

P∑
p=1

�peı�〈sp,ri 〉
∑

C̃ far from C

T �
L ,rCC̃

(sp)
∑

j/x j ∈C̃

e−ı�〈sp,r j 〉� j Y j . (47)
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Thus, the algorithm of the calculation of the matrix–vector product MfarY , using the one-
level FMM, consists of four steps (Fig. 4).

Step 1. Tansfer functions: Translation between two boxes T �
L ,OC −OC̃

(sp) defined in (41),

∀(OC − OC̃ ), with C and C̃ two far FMM boxes, ∀p ∈ {1, . . . , P}.
Step 2. Radiation functions: ∀C̃ FMM box, ∀p ∈ {1, . . . , P},

FC̃ (sp) =
∑

j/x j ∈C̃

eı�〈sp,OC̃ −x j 〉� j Y j .

Step 3. Transfer from C̃ to C : ∀C FMM box, ∀p ∈ {1, . . . , P},

GC (sp) =
∑

C̃ far from C

T �
L ,OC −OC̃

(sp)FC̃ (sp).

Step 4. Integration on S2: ∀i ∈ {1, . . ., N }, xi ∈ C FMM box,

�i = −�

(4�)2
�i

P∑
p=1

�peı�〈sp,xi −OC 〉GC (sp).

The other discrete calculations of the products with the matrices K and K∗ are performed in
the same way, using relations (41) and (42). We mean also to calculate products with A in
the same way, using relations (43)–(45). Moreover, this matrix enables us to perform close
interactions as well as far ones.

Choosing a number of FMM boxes Nfmm ∼ N 1/2, we obtain an algorithm with the com-
plexity O(N 3/2), i.e., O(�3) [8].
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5. COUPLING: MICROLOCAL DISCRETIZATION AND FAST MULTIPOLE METHOD

The coupling is based on the reduction of the size of the system using the approximation
of the phase function, and on the acceleration of the matrix calculation using the one-level
FMM. The one-level FMM is considered instead of the theory of the stationary phase. The
matrix–vector product is then performed in a classical way. Due to the approximation of the
phase function, we have to consider the coarse mesh (introduced in Section 3). The unknown
is defined on the coarse mesh and, in order to have a good geometrical approximation of �,
we resort to the fine mesh which is used in classical methods. For the multipole method, the
elements of the fine mesh are grouped in boxes (Fig. 5). Then, we consider the approximation
of the phase function given by the microlocal discretization. Using the notations listed in
Section 3, we consider the same system (34)–(36),

[
D� + A −K∗

K B� + A

][
Xh

Yh

]
=

[
NR −ıB�

ıB� 0

] [
Xh

Yh

]
+

[
Fh

0

]
, (48)

with the definitions

(Fh) j = 〈F, 
̃ j 〉Ṽh
= 〈F, (
 j ◦ �−1)eı��0〉Ṽh

, (49)

(B�) j i = 〈�
̃ i , 
̃ j 〉Ṽh
= 〈�(
 i ◦ �−1)eı��0 , (
 j ◦ �−1)eı��0〉Ṽh

, (50)

in the same way:

(D�) j i = 〈(1 + �)
̃ i , 
̃ j 〉Ṽh
, (NR) j i = 〈NR
̃ i , 
̃ j 〉Ṽh

, (51)

(K) j i = 〈K
̃ i , 
̃ j 〉Ṽh
, (K∗) j i = 〈K∗
̃ i , 
̃ j 〉Ṽh

, (52)

(A) j i = 〈M
̃ i , 
̃ j 〉Ṽh
. (53)

The matrices B�, D�, and NR are performed in a classical way with O(N f ) operations.
In order to speed up the calculation of the matrices K, K∗, and A, we use the one-level
FMM instead of the stationary phase, as described below. We recall that {Tk k0}k0 is the
set of triangles of � f that make up T s

k . Let us consider the matrix M defined as follows,
∀i, j ∈ {1, . . . , Nc},

Mi j =
∑

k/T s
k ∩ supp(�i )�=�

∑
l/T s

l ∩ supp(� j )�=�

∑
Tkk0

∑
Tll0

�kk0 eı��0(xkk0 ) �ll0 eı��0(xll0 )Gr
(
xkk0 , xll0

)
,

Elements of Γf

in FMM boxes

of one element of Γc
s

FIG. 5. Meshes and FMM boxes.
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with �kk0 ,�ll0 ∈ C. The matrix stands for a discretization of (28.1) with our new definitions
(52). We apply the one-level FMM separating the close part from the far part of the matrix
and using relation (41). Thus, the multipole approximation is given for all i, j in {1, . . . , Nc}
by

(
Mfar

approx

)
i j

= −�

(4�)2

P∑
p=1

�p

∑
k/T s

k ∩ supp(�i )�=�

∑
C/T s

k ∩C �=�

∑
k0/xkk0 ∈C

�kk0 eı��0(xkk0 )eı�〈sp,rkk0〉

×
∑

l/T s
l ∩ supp(� j )�= �

∑
C̃/T s

l ∩C̃ �=�

C̃ far from C

T �
L ,rCC̃

(sp)
∑

l0/xll0 ∈C̃

�ll0 eı��0(xll0 )e−ı�〈sp,rll0〉, (54)

with L and P defined by (39) and (40). Hence, the algorithm of the calculation of the matrix
Mfar, using the one-level FMM, consists of three steps.

Step 1. Tansfer functions: ∀(OC − OC̃ ), C̃ far from C , ∀p ∈ {1, . . . , P},

T �
L ,OC −OC̃

(sp) =
L∑

m=0

(2m + 1)ım ym(�|OC − OC̃ |)Pm(cos(sp, OC − OC̃ )).

Step 2. New radiation functions: ∀i ∈ {1, . . . , Nc}, ∀k/T s
k ∩ supp(�i ) �= �, ∀C FMM

box such that T s
k ∩ C �= �, ∀p ∈ {1, . . . , P},

FkC (sp) =
∑

k0/xkk0 ∈C

�kk0 eı��0(xkk0 )eı�〈sp,OC −xkk0〉.

Step 3. Approximation of the matrix, ∀i, j ∈ {1, . . . , Nc},

(
Mfar

approx

)
i j = −�

(4�)2

P∑
p=1

�p

∑
k/T s

k ∩ supp(�i )�=�

∑
C/T s

k ∩C �=�

Fk C (sp)

×
∑

l/T s
l ∩ supp(� j )�=�

∑
C̃/T s

l ∩C̃ �=�

C̃ far from C

T �
L ,OC −OC̃

(sp)Fl C̃ (sp).

Then, a matrix–vector product with the matrix M is approximated by the following calcu-
lation, ∀i ∈ {1, . . . , Nc},

(M Y )i =
Nc∑
j=1

(
(Mclose)i j + (

Mfar
approx

)
i j

)
Y j ,

where Mclose is performed in a classical way.
The other discrete calculations of the matrices K and K∗ are performed in the same

way, using relations (41) and (42). The relations (43)–(45) enable one to perform a mul-
tipole approximation of the matrix A. Denoting by Nfmm the number of FMM boxes, the
new theoretical complexity of the calculation cost is given for a product M Y in Table I,
where M is one of the matrices K, K∗, and A. The memory cost has the complexity
O(max(Nfmm, Nc) N f

Nfmm
+ N 2

c ).
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TABLE I

Calculation Cost

Independent of Y Dependent on Y

Mfar ∼8L N f + N 2
f

Nfmm

+ max
(

N 2
fmm, N 2

c

) N f

Nfmm

∼N 2
c

Mclose ∼ N 2
f

Nfmm

∼N 2
c

Concerning the number of FMM boxes, the optimal choice is then Nfmm ∼ N 1/2
f . Thus,

the number of FMM boxes, Nfmm is greater than Nc. Now, we can compare the different
methods (Table II).

With our new method, the calculation which is independent of Y corresponds to the matrix
calculation and is performed once. On the other hand, the calculation that is dependent on Y is
performed to each iteration. Let Niter be the number of iterations within the iterative solution
of the system. The global CPU time of our new method is then O(N 3/2

f + Niter N 2/3
f ). With

the one-level FMM, users classically store the part of the matrix corresponding to the close
iteractions that are performed once. That implies the complexity given between brackets.
However, in order to consider industrial test cases, we do not store the close part of the
matrix and we perform them to each iteration. Hence, our one-level FMM has a CPU time
of complexity O(N 5/4

f + Niter N 3/2
f ) and requires a storage of complexity O(N f ). Anyway,

our method appears more efficient than the one-level FMM for all Niter. Moreover, due to
the difficulties of the theory of the stationary phase in 3-D, our new method is more robust
than the microlocal discretization with stationary phase and obviously more efficient than
the microlocal discretization without stationary phase.

6. NUMERICAL RESULTS

In order to validate the new method, four codes were written. The first one denoted by
C(IE) solves the IE system in a classical way, as defined in Section 2. The second code,
C(IE + FMM), is a variant of the previous one, speeding up the matrix–vector products using
the one-level FMM, as explained in Section 4. The third one, C(IE + MD), is an application
of the microlocal discretization method to the IE system, as explained in Section 3. The code
C(IE + MD + FMM) is an application of the coupling of both microlocal discretization and
one-level FMM to the IE system, which we described in Section 5. As regards the IE system,
the parameter � of the �-system (16) is chosen equal to 0.5. The relaxation parameter of

TABLE II

Comparison of Methods

Calculation Calculation
Method independent of Y dependent on Y Memory

Microlocal discretization without stationary phase ∼N 2
f ∼N 2/3

f ∼N f

One-level FMM
(

Nfmm ∼ N 1/2
f

)
∼N 5/4

f

(
or N 3/2

f

)
∼N 3/2

f ∼N f

(
or N 3/2

f

)
New method

(
Nfmm ∼ N 1/2

f

)
∼N 3/2

f ∼N 2/3
f ∼N f
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the relaxed Jacobi method is set equal to 0.7 (see Section 2.2). Concerning the FMM, the
number of terms in the Gegenbauer series is defined by L = �d + C(�d)1/3, where d is
the diameter of the multipole boxes, with C = 6 (see Section 4). In addition, we denote
by JM the Jacobi method, GC1 the conjugate gradient applied to the matrix (D� + A) (see
Section 2.2), and GC2 the second conjugate gradient. In this section, we also denote by N f ,
Nc, and Nfmm, the number of triangles of � f , the number of triangles of �c, and the number
of FMM boxes. The fine mesh � f has an average edge length of about �/10 for the sphere
and about �/7 for the Cetaf, the industrial test case. All the results are obtained on a EV67
processor of a Compaq cluster ES40.

We first present numerical tests for a sphere with a diameter D = 2 m, which allows us to
compare numerical solutions with the exact solution, the Mie series solution. Comparisons
are made considering the bistatic RCS (radar cross section). The results are obtained with
the residual 10−4 and 10−3, respectively, for GC1 and GC2, and the relative difference
10−3 between two iterates of JM. With the sphere, we consider a plane incident wave of
direction (0, 0, −1). Figure 6 validates C(IE) and the FMM contribution in C(IE + FMM).
Regarding CPU time and memory requirements, we can give the gain which results from
the FMM approximation. The difference for the CPU time derives from the nonuse of the
Jacobi relaxed method for the Robin case R = 0 (see Section 2.2). Concerning accuracy,
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FIG. 6. C(IE)–C(IE + FMM), for � = 8. (a) Dirichlet case; (b) Robin case; (c) Neumann case.
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TABLE III

C(IE) and C(IE + FMM): Cost and Accuracy

Figure CPU time (s) Memory Y ıX Err(AD)

6a C(IE) 15,256 682 MB 2.3 × 10−3 0.6 × 10−4

C(IE + FMM) 6,048 522 MB 9.1 × 10−3 1.3 × 10−4

6b C(IE) 11,311 682 MB 3.8 × 10−3 0.4 × 10−3

C(IE + FMM) 546 521 MB 8.9 × 10−3 1.5 × 10−3

6c C(IE) 17,701 682 MB 3.1 × 10−3 0.5 × 10−3

C(IE + FMM) 8,450 522 MB 9.4 × 10−3 0.6 × 10−3

Table III shows the good behavior of the FMM. Err(AD) denotes the relative error in l2-
average made on the diffusion amplitude in comparison with the Mie series solution and
Y ı X denotes the relative error ‖Yh − ı Xh‖2

‖Xh‖2
which converges to 0. Actually, relation (17) leads to

good criteria of accuracy; such criteria does not exist for other integral
formulations [31]. For small test cases, Fig. 7 shows that the coupling C(IE + MD + FMM)
enables one to obtain results similar to the microlocal discretization method C(IE + MD)
but with a CPU time clearly less than that of C(IE + MD). Thus, for large test cases, we
only validate the coupling C(IE + MD + FMM). We can also give the gain which results
from the FMM approximation and the accuracy of the different tests in Table IV. The costs
with C(IE), given in Table III, are recalled for comparison.

We now validate the code C(IE + MD + FMM) by considering higher frequencies with
the sphere. Figures 8 and 9 show excellent results obtained for the Dirichlet boundary
condition. The numerical error is given in Table V. Figure 10 shows the results regarding
CPU time and memory requirements with log–log curves. Concerning the one-level FMM,
it was used with rather small cases. Thus, these results are not significant for the one-level
FMM.

Figure 10 shows that our new method is very efficient. Considering a fine mesh with an
average edge length of about �/10, we can choose a coarse mesh with an average edge
length of about �/C�, where C� decreases when � increases. The case illustrated in Fig. 9
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FIG. 7. C(IE + MD)–C(IE + MD + FMM), for � = 8. (a) Dirichlet case; (b) Robin case.
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TABLE IV

C(IE + MD) and C(IE + MD + FMM): Cost and Accuracy

Figure CPU time (s) Memory Y ı X Err(AD)

7a C(IE) 15,256 682 MB 2.3 × 10−3 0.6 × 10−4

C(IE + MD) 1,613 12 MB 1.2 × 10−2 1.5 × 10−3

C(IE + MD + FMM) 183 37 MB 1.3 × 10−2 1.5 × 10−3

7b C(IE) 11,311 682 MB 3.8 × 10−3 0.4 × 10−3

C(IE + MD) 1,599 12 MB 2.5 × 10−2 5.3 × 10−2

C(IE + MD + FMM) 181 37 MB 2.6 × 10−2 5.1 × 10−2

TABLE V

Accuracy with the Dirichlet Boundary Condition

Figure � N f Nc Y ı X Err(AD)

8a 12 11,520 180 6.6 × 10−3 1.2 × 10−3

8b 24 46,080 720 3 × 10−3 1 × 10−3

9 84 327,680 1280 1.7 × 10−3 0.9 × 10−3

0 30 60 90 120 150 180
      (deg)θ     

-10

0

10

20

B
is

ta
tic

 R
C

S
 (

dB
.m

2)

Sphere, D=2,     =12, Dirichlet case            κ                   
Nf = 11520, Nc = 180 (     / 1.27), Nfmm = 272                          λ                      

IE+FMM+MD
Exact

a

0 30 60 90 120 150 180
      (deg)θ     

-10

0

10

20

B
is

ta
tic

 R
C

S
 (

dB
.m

2)

Sphere, D=2,     =24, Dirichlet case            κ                   
Nf = 46080, Nc = 720 (     / 1.24), Nfmm = 1144                         λ                       

IE+FMM+MD
Exact

b

FIG. 8. C(IE + MD + FMM), Dirichlet case. (a) � = 12; (b) � = 24.
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FIG. 10. CPU time and memory requirements. (a) Precalculation; (b) resolution; (c) total CPU time;
(d) memory requirements.

is interesting with a coarse mesh where C� = 0.5, i.e., an average edge length of about
2 �. The frequencies considered are not large enough to validate the behavior Nc ∼ N f

1/3

estimated by the theory. However, we can plot a first curve concerning Nc as a function of
N f (see Fig. 11).

We can already see that the behavior of Nc as a function of N f , or as a function of the
frequency, is promising. We give now information about the numbers of iterations in the
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cube root

FIG. 11. Nc(N f ).
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TABLE VI

Numbers of Iterations

� 8 12 24 84

IE 11 − 8 − 19 10 − 8 − 20
IE + FMM + MD 10 − 9 − 16 11 − 9 − 15 12 − 10 − 13 13 − 12 − 12

iterative resolution. In Table VI, the numbers of iterations are given in the form a − b − c,
which are the numbers of iterations respectively of GC1, GC2, and JM. The numbers of
iterations do not increase with � and the new method does not damage the convergence of
the iterative methods. Moreover, for the code C(IE + MD + FMM), when the wavenumber
increases, the number of iterations of JM decreases, as does the error on ‖Yh − ı Xh ‖2,
given in Table V.

Although results do not prove to be as good in both Neumann and Robin cases, probably
because the approximation of the surface is of degree l = 1 (see error estimations), they are
still quite relevant. Figures 12 and 13 give results for the Neumann boundary condition and
the Robin boundary condition with the impedance Z = 1. As regards memory requirements
and CPU time, both Neumann and Robin cases are similar to the Dirichlet one. For the
Neumann case, the accuracy is given in Table VII. For the Robin case, results are given in
Fig. 13 and the accuracy is given in Table VIII.

In this section, we have presented results such that the coarse mesh has an average edge
length of about �/C�, with C� becoming smaller and smaller for the same accuracy when
� increases. Thus, the memory requirements and resolution time are less than those of the
other methods. Nevertheless, the matrix calculation deserves acceleration. We are hopeful
that CPU time will be further reduced using a multilevel FMM instead of the one-level
FMM.

Concerning the Cetaf, due to a concavity, the condition of convexity is not met. The
results are not as good as the ones obtained for the sphere; however they are also quite
interesting, as explained below. The results are given below with the incident plane wave of
direction (0, −√

2/2, −√
2/2), which hits the Cetaf at an angle of 45◦. We used a fine mesh

with an average edge length of about �/7 and a coarse mesh with an average edge length
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FIG. 12. C(IE + MD + FMM), Neumann case, � = 12 or 60. (a) � = 12; (b) � = 60.
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FIG. 13. C(IE + MD + FMM), Robin case, � = 12 or 60. (a) � = 12; (b) � = 60.

of about �/1.7. Figure 14 shows the coarse mesh of the Cetaf used for the following tests
(see also [13, p. 233]; Fig. 43). The fine mesh consists of 57,504 triangles and the coarse
one consists of 3594 triangles. The reference or classical solution was computed with the
code C(IE + FMM) using the fine mesh, and with a residual criterion of 10−3 for GC1.
Because of the high CPU cost of the classical solution, we used a residual criterion on of
5 × 10−3 for the GC2. We consider that the solution obtained has sufficiently converged
at least for the RCS whose evolution is negligible during the last iterations. The other
results were obtained with a residual criterion of 10−3 for GC1 and GC2. Moreover, all
the results are obtained for the Robin boundary condition. In the following comparisons,
we consider the solution obtained with our code C(IE + MD + FMM) and the solution
computed with C(IE + FMM) using the coarse mesh with an average edge length of about
�/1.7, and we compare these solutions to the reference one. Table IX shows that our code
has requirements that are close to those of C(IE + FMM) using the coarse mesh while our
code gives a better accuracy than C(IE + FMM) using the coarse mesh. The currents shown
in Fig. 15 confirm this note. However, the accuracy of the coupling C(IE + FMM + MD) is
not sufficient, especially concerning the RCS (see Table IX and Fig. 16a). Here, Err(AD)
denotes the relative error in l2-average made on the diffusion amplitude in comparison with
the reference solution. Then, we computed the solution with C(IE + FMM) using the fine
mesh, initialized with the solution given by our code. In this way, after two iterations of
GC2, after about 25 h (including the step of initialization of Table IX), C(IE + FMM) gives
accurate results with Err(AD) = 1.5 × 10−2 (see Fig. 15d and Fig. 16c). In the case of the
Cetaf, our new method also proves interesting. It can be used like a good initialization of
classical methods. Moreover, the curves in Fig. 16 show two peaks which can be interpreted
as Darve did [13]. The first peak occurs for � = 45◦ + 180◦. This corresponds to the shadow

TABLE VII

Accuracy with the Neumann Boundary Condition

Figure � N f Nc Y ı X Err(AD)

12a 12 11,520 180 2.2 × 10−2 3.7 × 10−3

12b 60 327,680 1280 1.2 × 10−2 2.8 × 10−3
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TABLE VIII

Accuracy with the Robin Boundary Condition

Figure � N f Nc Y ı X Err(AD)

13a 12 11,520 180 1.4 × 10−2 6.5 × 10−2

13b 60 327,680 1280 1.8 × 10−3 3.3 × 10−3

TABLE IX

C(IE + MD) and C(IE + MD + FMM): Cost and Accuracy

CPU time Memory Y ı X Err(AD)

C(IE + FMM) (�/7) 200 h 3164 MB 5 × 10−2

C(IE + MD + FMM) (�/1.7) 5 h 23 min 1012 MB 4 × 10−2 1.7 × 10−1

C(IE + FMM) (�/1.7) 1 h 29 min 779 MB 2.9 × 10−1 2.4 × 10−1

FIG. 14. The coarse mesh of the Cetaf.
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FIG. 15. Real part of the currents on the Cetaf. (a) IE + FMM + MD; (b) IE + FMM(�/7);
(c) IE + FMM(�/1.7); (d) IE + FMM(�/7) initialized by (a).
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FIG. 16. Bistatic RCS of the Cetaf. (a) IE + FMM(�/7)/IE + FMM + MD; (b) IE + FMM(�/7)/
IE + FMM(�/1.7); (c) IE + FMM(�/7)/IE + FMM(�/7) initialized.

region. The second one corresponds to a reflection of the incident wave on the surface of
the Cetaf. This occurs for � = 45◦ + 180◦ + 90◦. Figure 15 also shows the period of the real
part of the current already presented by Darve [13].

7. CONCLUSION

The method we have developed couples two kinds of methods in order to speed up the
solution of integral equations. First, concepts of the geometrical and physical theories of
diffraction enable us to reduce the size of the system considered, using the microlocal
discretization introduced by Abboud et al. [1, 2]. Second, concepts of the one-level FMM
enable us to speed up the calculation of the matrix of the new system. Such a combination
has resulted in a new method that is more efficient than the one-level FMM and more robust
than the microlocal discretization, which uses the theory of the stationary phase. Moreover,
this coupling has been performed within a new formulation of the integral equations which
is suitable for iterative resolution.

Numerical tests confirm the relevant reduction of both CPU time and memory cost.
We have obtained good accuracy for resolutions based on rather coarse meshes, with an
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average edge length of up to two wavelengths. However, both Neumann and Robin cases
merit further improvements, considering a piecewise 2-degree polynomial surface in order
to approximate the boundary of the object.

Moreover, we are contemplating the coupling with the multilevel FMM, which seems
to further reduce the calculation of the matrix of the new system. This should result in an
algorithm more efficient than the multilevel FMM, thanks to the approximation of the phase
function. For nonconvex objects, we also plan to conduct a study based on the consideration
of more directions in the phase approximation, taking our inspiration from the work of
A. de La Bourdonnaye. In addition, we will implement the new method within Maxwell’s
equations [23].
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